

Oncology StripAssays®

Identify the most relevant mutations in cancer-associated genes to optimize patient-specific therapies

Modern cancer therapies target specific cell processes. The development of monoclonal antibodies binding to epidermal growth factor receptor (EGFR) and the development of drugs inhibiting EGFR tyrosine kinase have been major steps towards personalized cancer treatment.

Targeted therapy generally causes less damage to healthy cells compared to conventional chemotherapy.

Optimal results in cancer treatment are achieved when the personalized approach is chosen.

Monoclonal antibody therapies work exceptionally well in many, but not in all cases. Certain genetic alterations are known to prevent the success of cancer therapies.

Thus, genetic tests identifying relevant mutations in oncogenes and tumor suppressor genes facilitate an efficient patient-specific therapy.

ViennaLab Oncology StripAssays®

- Simple protocol for complex diagnostic questions
- Manual or automated processing
- No expensive lab equipment
- Ready-to-use reagents
- CE/IVD-labeled complete kits

www.viennalab.com

KRAS & NRAS

KRAS and NRAS are members of the RAS oncoprotein family that act as mitogen-activated protein kinase (MAPK) signaling pathway GTPases downstream of the epidermal growth factor receptor (EGFR).

Activating RAS mutations predict a lack of response to anti-EGFR monoclonal antibody therapies (cetuximab or panitumumab) in colorectal cancer (CRC) patients. KRAS and NRAS mutations are mutually exclusive.

In the Panitumumab Randomized Trial in Combination with Chemotherapy for Metastatic Colorectal Cancer to Determine Efficacy (PRIME) study, NRAS mutations were detected in a fraction of approximately 7% KRAS wild-type CRC tumors.

Published data suggest that NRAS mutations, in addition to KRAS mutations, predict a lack of response to anti-EGFR therapy in metastatic CRC patients.

BRAF

Mutations in the BRAF gene have been reported to contribute to the progression of thyroid cancer and melanoma.

BRAF encodes a serine/threonine kinase, which is a key factor in the MAPK pathway that transduces signals from the RAS oncogenes.

BRAF mutations have been identified in thyroid cancer, melanoma and in some other types of cancer. Certain mutations significantly increase kinase activity and by doing so they can continuously activate transcription-mediated proliferation, which supports neoplastic growth.

BRAF KRAS NRAS XL BRAF **KRAS-BRAF** KRAS XI **StripAssay®** Position **Mutations** 600/601 5-590 5-680 5-620 5-570 5-580 5-560 Codon 12 G12A, G12R, G12D, G12C, G12I, G12L, G12S, G12V х х х G13D, G13C х х х Codon 13 G13A, G13R, G13D, G13C, G13S, G13V Х **KRAS** Codon 59 A59E, A59G, A59T х (29 mutations) Codon 60 G60V х Codon 61 Q61R, Q61H +), Q61L, Q61K Х Codon 117 K117N #), K117E х Codon 146 A146P, A146T, A146V х Codon 12 G12A, G12R, G12D, G12C, G12S, G12V Codon 13 G13R, G13D, G13C, G13V х Codon 59 A59D, A59T NRAS х (22 mutations) Codon 60 G60R, G60E х Codon 61 Q61R, Q61E, Q61H *), Q61L, Q61K, Q61P х Codon 146 A146T х V600E x) х х х Codon 600 BRAF V600A, V600D, V600E ~), V600G, V600K, V600M, V600R Х (9 mutations) Codon 601 K601E х KRAS: ⁺⁾ p.Q61H (c. 183A>C) and p.Q61H (c. 183A>T); ^{#)} p.K117N (c. 351A>C) and p.K117N (c. 351A>T) NRAS: *) p.Q61H (c. 183A>C) and p.Q61H (c. 183A>T); BRAF: *) p.V600E (c. 1799T>A); -) p.V600E (c. 1799_1800TG>AA)

Mutations covered by the KRAS, NRAS & BRAF StripAssays®

Mutations covered by the EGFR XL StripAssay®

EGFR

Non-small cell lung cancer (NSCLC) comprises approximately 85% of all lung cancers. Somatic mutations in the epidermal growth factor receptor tyrosine kinase (EGFR-TK) domain influence the treatment with EGFR-TK inhibitors.

TK inhibitors, such as erlotinib and gefitinib, are effective anti-cancer drugs in NSCLC patients carrying activating EGFR mutations.

Conversely, patients carrying the resistance mutation T790M do not benefit from EGFR-TK inhibitor therapy.

Identification of EGFR mutations allows the decision whether an EGFR-TK inhibitor is suitable for use in NSCLC therapy.

FCGR

Fc gamma receptor (FCGR) genotyping helps to identify high and low responders in antibody-based immunotherapy.

In colorectal cancer 56% of patients with FCGRIIIA F158F genotype responded to treatment with cetuximab plus bevacizumab, compared to 25% with heterozygous F158V and 8% with homozygous V/V genotype.

Breast cancer patients with the genotype FCGRIIA H131H and/or FCGRIIIA V158V responded favourably to trastuzumab therapy.

StripAssay®	Exon	Mutations
		G719A
	Exon 18	G719C
		G719S
-		K745_E749del
		E746_A750del
		E746_A750delinsIP
		E746_A750del
		E746_T751delinsIP
		E746_T751del
		E746_T751delinsA
		E746_T751delinsV
		E746_T751delinsVA
		E746_S752delinsl
		E746_S752delinsA
EGFR XL	Exon 19	E746_S752delinsV
(30 mutations)		E746_S752delinsD
		E746_P753delinsVS
		L747_E749del
		L747_A750delinsP*
		L747_A750delinsP*)
		L747_T751delinsP
		L747_T751delinsS
		L747_T751del
		L747_S752del
		L747_S752delinsQ
		L747_P753delinsQ
		L747_P753delinsS
	Exon 20	T790M
	E 01	L858R
	Exon 21	L861Q
* p.L747_A750delinsP (c. 2	238_2248delinsGC)	

PGX-5FU

The majority of the 3 to 5% of patients not adequately metabolizing 5-fluorouracil (5-FU) carry a specific mutation in their DPYD gene.

While heterozygous patients should be given lower 5-FU doses, homozygous patients should receive alternative chemotherapeutic treatment.

Mutations covered by the FCGR & PGX-5FU StripAssays®

StripAssay®	Gene	SNP	FCGR 5-670	PGX-5FU 4-720
FCGR	FCGRIIA	H131R	х	
	FCGRIIIA	F158V	х	
PGX-5FU	DPYD	IVS14+1 G>A		х

Oncology StripAssays[®] identify the most relevant mutations to support therapy decisions for colorectal cancer, thyroid cancer, lung cancer, melanoma as well as breast cancer.

Disease	Oncogene	Therapy
Colorectal cancer	KRAS/NRAS	Anti-EGFR mAbs (e.g. cetuximab, panitumumab)
Melanoma	BRAF	Small molecule inhibitors (e.g. vemurafenib, dabrafenib, trametinib)
Thyroid cancer	BRAF	Small molecule inhibitors (e.g. vemurafenib) under evaluation
Lung cancer	EGFR	Thyrosine kinase inhibitors (e.g. afatinib, erlotinib, gefitinib)
Disease	Gene	Therapy
Colorectal cancer Breast cancer	FCGRIIA FCGRIIIA	Under evaluation
Various types of cancers	DPYD	Personalized 5-FU therapy: Heterozygotes: lower doses of 5-FU Homozygotes: alternative drugs

The three steps of the StripAssays®

Step	Requirement
1. Amplification: Multiplex PCR. Simultaneous biotin-labeling	Thermocycler
2. Hybridization: Directly on the StripAssay® teststrips	Incubator
3. Identification: Labeled products detected by streptavidin-alkaline phosphata	se Naked eye or scanner & software

Cat.no.:

PGX-5FU		
BRAF 600/601	StripAssay®	5-560 (20 tests/kit)
BRAF	StripAssay®	5-570 (20 tests/kit)
KRAS-BRAF	StripAssay®	5-580 (20 tests/kit)
KRAS	StripAssay®	5-590 (20 tests/kit)

NRAS XL	StripAssay®	5-620 (20 tests/kit)
EGFR XL	StripAssay®	5-630 (20 tests/kit)
FCGR	StripAssay®	5-670 (20 tests/kit)
KRAS XL	StripAssay®	5-680 (20 tests/kit)

ViennaLab offers StripAssays[®] for a wide range of diagnostic applications. Visit www.viennalab.com

Manufacturer: ViennaLab Diagnostics GmbH Gaudenzdorfer Gürtel 43–45, A-1120 Vienna, Austria Phone: (+43-1) 8120156-0 Fax: (+43-1) 8120156-19 info@viennalab.com

	Distributor:
(
I	Nore details available at www.viennalab.com